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Ingredients for Graph Neural Networks

* Traditional ML techniques cannot process native graph structured data.
= Graph neural nets (GNNs) can!

* Three core concepts that we require:
1. Permutation invariance;
2. Permutation equivariance;
3. Locality.

* With the above, can define the general class GNNs.



Permutation Invariance

4 )
Want f: G = R™? indifferent to

‘representation’ of G:
G, = G, = f(G1) = f(Gy)

o

* Consider f:{x{, -, x,} » R4,

* Must construct feature matrix X:

J

construction = ordering of {x{, -, x,}!
* f must be indifferent to labelling, i.e.:
f(PX)=f(X)forP €S,

= permutation invariance

Courtesy: www.math.cmu.edu



Permutation Equivariance

* Now, consider f: G = (X, A) » R™? j.e.

output over every node.

* Shuffling labels should at most shuffle
outputs of f, i.e.:

f(PX,PAPT) = Pf(X,A) for P€ S,

= permutation equivariance

Courtesy: www.math.cmu.edu



Locality

Node of interest 1-hop

* Graphs have natural notion of locality.

* For every v, define its (1-hop) neighbourhood:
Ny:=f{u € V: (v,u) € E) ¥
* Define multiset N = {{Nv: v E V}}
3-hop

* Want permutation equivariant f that exploit locality

of G
= define f over the multiset N appropriately!



A general framework for GNNs

Putting ingredients together, construct f: (X, A) = R™*4,

-hv1_ -g(Nvl:A)_
f(X,A):=| ¢ | = :
_hvn_ _g (an' A)_

Where g: N, = R%is:
1. permutation invariant;
2. local.

= f is permutation equivariant.

* GNN can be applied across three main tasks:
* Node focused;
* Graph focused;
* Edge focused.



Flavours of GNNs N
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= most expressive!

Courtesy: P. Velickovi¢




Expressivity:

Analysing the power of GNNs



Expressivity

* The study of:
* Computational capabilities, and;
* Behaviour of GNNs.

* Canonical framework relies on graph isomorphism problem (GIP):
“Given two graphs G; and G5, can we decide if
they are isomorphic or not¢”
* Gold standard for heuristics:

= Weisfeiler-Lehman graph isomorphism test.
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1-WL & GNN Equivalence |

* 1-WL is reminiscent of the message passing mechanism!
“A standard message passing GNN is at
most as expressive as 1-WL”

Theorem (Xu et al., Morris et al.): equivalence holds if:
1. Composition of MSG, AGG and UPT constructs injective map from

(RS ARS P u e Ny} - hE and;
Y Weoadons {h,(]L): v E V} ~R? is injective.
* Conditions are sufficient but not necessary:
= Can we find necessary conditions?



1-WL & GNN Equivalence I

* Expressivity frameworks = can understand a lot about GNNE!
* Some known classes of graphs impervious to 1-WL, e.g. k-regular:
‘Optimal message passing GNN architectures

cannot distinguish k-regular graphs.’

* What is the complete characterisation of the classes of graphs
impervious to 1-WL or higher k-WL tests?

* Important: could help us design more expressive graph-based models!



Developments & Drawbacks

* Higher order hierarchical heuristics, e.g. k-WL (citation)

* k-tuples of adjacent nodes used to construct new colourings:
= information content in each colouring is greater;

= mechanism becomes more ‘non-local’ for greater k, can distinguish more substructures in
graphs;

= computationally expensivel!

* Inspired hierarchical models: k-GNNs, Message Passing Simplicial
Networks (MPSNs), Cell Complex Networks (CWNs) etc.:
* All much more powerful than 1-WL but very computationally expensive;

* Message passing mechanism becomes more ‘non-local’ = generalisation
issues?



Developments & Drawbacks

* A more complete notion of expressivity?
‘Similarity’ more useful than ‘sameness’

* Can we develop an ‘approximate’ version of the Weisfeiler-Lehman
test?

* Models with 1-WL expressivity (very good) perform poorly on
substructure identification (Chen et. al).



Algebraic
Topology:

A new approach to GNNs



General Idea

* Want GNN models that can exploit:

1. Relational information among nodes, and;

2. Structural information of the larger topology.

* Algebraic topology: encode topological structure of G in algebraic
objects.

* Use algebraic objects as means for improving substructure
identification while preserving relational information.

= Our idea: use graph polynomials!



Graph Polynomials

* Active area of combinatorics/algebraic graph theory.
* Graph polynomial: polynomial representation of (.

* Example: from adjacency matrix A of G, the characteristic polynomial

pa(x, 1) == det(A — Al).

* Many graph polynomials exist
* We consider the Tutte-Whitney Polynomial.



Tutte-Whitney Polynomial

T(G;x,y) = ) (x = Do Te@(y — 1o
ACE =
= Yij=0bijx"y’, b;j €L
* Generalisation of the chromatic polynomial P(G; A).

* Encodes many interesting structures in:
1. The evaluations of T(G;x,y), and;
2. The coefficients b; ;.

* Proving above theorems (combinatorically) is difficult.

* Can ML models learn to interpret T(G; x, y) even in absence of
theorems?



Our Research |

* Integrating topological information T(G; x,y) in a GNN:
1. GNNconcat;
2. GNNhybrid.

* Testing models on toy data sets:
* Can they identify structures such as triangles, squares etc.2
* Do they balance locality with substructure identification well?

* Test best models on real world data where substructure identification
is important but not principal task.



Our Research |l

* GNNconcat: redundant data augmentation?
* GNNhybrid: better model design?

* Introduce specialised unit for polynomial interpretation?

* Easy to define distances on the space of finite bivariate polynomials:
* Similarity metric?

* Biggest stumbling block:
* Polynomials neglect node information;
* Computational complexity of T(G; x,y);
* T(G;x,y) has nice properties (e.g. multiplicativity): can we exploit them?
* More information than needed?

1. Calculate T only over subgraphs of interest?
2. Better choices of graph polynomials that are less expensive?



Addenda:

Additional slides



Permutation Invariance

* If G; = G, then f(Gy) = f(G,)!

* Consider just the set of feature vectors:
X ={xq,,x,} € x, x; € RX,

*let f:y = R.

* To apply f to X, must construct a feature
matrix X:

construction = ordering of {x{, -, x, }!

* f must be permutation invariant:

f(PX)=f(X)for P €S,

Courtesy: www.math.cmu.edu



Permutation Equivariance |

* Now, suppose f: 4 - R".

* f still must be agnostic to ordering of
{le B xn}!
* f must be permutation equivariant:

= f(PX) = Pf(X) for P € §,,.

Courtesy: www.math.cmu.edu



Permutation Equivariance |l

* Now, define f:G - R",G = (V,E).

* Represent G via adjacency matrix A

aij =

0, otherwise.

* P must now be applied to both rows and
columns in A such that PAPT = A.

* Hence, permutation equivariance becomes:
= f(PX,PAPT) = f(X,A) for P € S,

Courtesy: www.math.cmu.edu



Message Passing GNNs

Let G be an attributed graph. Then a message passing GNN builds
latent vector representations h,, at each node v in the following iterative
fashion:

1. Initialise: h,(,O) « x,,Vv € V;

2. For 0 <[ < L, update the latent vectors hg):

l.  Message: m,(,?L « MSGU-1) (hl(,l_l), h,gl_l)) for all u € N;
ll. Aggregate: ai(]l) « AGGU~V ({mffu_l): u e Nv});
IIl. Updq’re:h,(,l) « ypT-b (hff_l), a,()l_l)).



1-D Weisfeiler-Lehman Test

Let G; and G, be attributed graphs. Then:

1. Initialise each node v € IV with colour C,Si’o) — Xéi)for i €{1,2};
2. Forl=1,2,:--,max{|Vy|, |V5]}:
a) Update node colours: C,Ei'l) — HASH (C,gi’l_l),{{Cl(Li'l_l): u € Nv}}) for all
veEV andi € {1,2};
b) Test: If {{Cf'”: v € V}} + {{CISZ’”: vE V}} then G, %G, .

* If colours in step [ ‘same’ as in step ([ — 1), terminate.

e HASH is injective.
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